Ученые из МФТИ впервые без привлечения экспериментальных данных рассчитали кривые плавления циркония и гафния, что имеет решающее значение для понимания тепловых свойств и фазовых диаграмм этих металлов и обеспечит их безопасное применение в ядерной энергетике. Команда также сравнила свои результаты с экспериментальными данными по плавлению циркония и обнаружила хорошее согласие.
Работа опубликована в журнале Physical Review B.
Цирконий и гафний являются переходными металлами и входят в одну группу таблицы Менделеева, что делает их химические свойства очень похожими друг на друга. Благодаря высокой коррозионной стойкости в воде при высоких температурах эти металлы являются важными материалами для конструкций водоохлаждаемых ядерных реакторов: цирконий как конструкционный материал оболочек тепловыделяющих элементов из-за малого сечения поглощения тепловых нейтронов, а гафний, в свою очередь, — как материал регулирующих стержней благодаря способности исключительно эффективно захватывать тепловые нейтроны.
Для решения целого ряда задач в ядерной энергетике, аэрокосмической промышленности и материаловедении (эти металлы широко используются во многих отраслях) необходимо знать их кривые плавления — зависимость между температурой и давлением, при которых металл переходит из твердого в жидкое состояние. Эти данные закладываются в модели, с помощью которых рассчитываются штатные и аварийные режимы работы двигателей и энергоустановок.
С точки зрения теории, плавление в металле наступает, когда под воздействием тепла его атомы начинают колебаться настолько сильно, что твердое тело превращается в жидкое, — такой критерий был предложен Фердинандом фон Линдеманом в 1910 году. Обычно для расчета кривых плавления с помощью критерия Линдемана динамика ионов в кристаллической решетке рассматривается как колебания частиц на пружине (в квазигармоническом приближении), что дает хорошие результаты, например, для алюминия или меди. Однако этот традиционный метод не работает для гафния и циркония из-за более сложного механизма колебаний ионов (сильных эффектов ангармонизма) в этих металлах. Чтобы решить эту проблему, ученые провели моделирование металлов с помощью квантовой молекулярной динамики — этот метод позволяет рассчитывать траектории ионов с учетом квантовых эффектов.
Дмитрий Минаков, доцент МФТИ, рассказывает: «Для изучения кривых плавления гафния и циркония мы сделали уникальные расчеты на суперкомпьютере с использованием метода квантовой молекулярной динамики. Для детектирования плавления мы применили хорошо известный критерий Линдемана, в котором средние смещения ионов от положений равновесия рассчитывались напрямую из моделирования».
Проведенные исследования показывают, что критерий Линдемана может быть использован для прогнозирования плавления и в случае сложных колебаний ионов, но амплитуду колебаний нужно рассчитывать непосредственно из ионных траекторий.
Павел Левашов, заместитель заведующего кафедрой физики высокотемпературных процессов МФТИ, подводит итог: «Мы также впервые представили кривую плавления гафния вплоть до 225 ГПа. Это позволило заполнить пробел в знаниях, так как до настоящего времени не было никаких данных о плавлении гафния при давлениях выше атмосферного».
В целом, данное исследование обеспечивает более глубокое понимание теплофизических свойств гафния и циркония и предлагает новый метод для расчета кривых плавления. Результаты работы, несомненно, найдут применения в ядерной энергетике и технологиях, связанных с металлообработкой при высоких давлениях.